Abstract

Vacancy engineering offers an appealing strategy for modifying the electronic structure of transition metals. Transition metals with abundant sulfur vacancies can significantly contribute to the microwave absorption capabilities of absorbers. In this study, an NixSy@De composite material was synthesized through a straightforward hydrothermal synthesis technique. The effective absorption bandwidth (EAB) of this composite material reached 9.86 GHz at 1.44 mm. A minimum reflection loss (RLmin) of -33.61 dB at 1 mm was achieved, and after mild etching, the RLmin further improved to -93.53 dB at 1.16 mm to achieve a high-attenuation microwave absorption. The exceptional performance of NixSy@De for the absorption of electromagnetic waves (EMWs) is based on its high dielectric loss, substantial magnetic loss, and excellent impedance matching. This work combines transition metal sulfides with three-dimensional biotemplated diatomite, providing valuable insights into the design of advanced EMW absorbing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.