Abstract

Musculoskeletal disease and injury are highly prevalent disorders that impose tremendous medical and socioeconomic burdens. Tissue engineering has attracted increasing attention as a promising technique of regenerative medicine to restore degenerative or damaged tissues and is used to produce functional disease models. As a revolutionary technology, three-dimensional (3D) bioprinting has demonstrated a considerable potential in enhancing the versatility of tissue engineering. 3D bioprinting allows for the rapid and accurate spatial patterning of cells, growth factors, and biomaterials to generate biomimetic tissue constructs. Meanwhile, 3D-bioprinted in vitro models also offer a viable option to enable precise pharmacological interventions in various diseases. This review provides an overview of 3D bioprinting methods and bioinks for therapeutic applications and describes their potential for musculoskeletal tissue regeneration. We also highlight the fabrication of 3D-bioprinted models for drug development targeting musculoskeletal disease. Finally, the existing challenges and future perspectives of 3D bioprinting for musculoskeletal regeneration and disease modeling are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call