Abstract

The structural, compositional, and optical properties of ZnO/MgxZn1−xO m-plane heterostructures are investigated using scanning transmission electron microscopy, laser-assisted atom probe tomography, and micro-photoluminescence. Coupled with electron tomography, atom probe tomography is currently the only technique providing a 3D reconstruction of the position of the atoms of a nanoscale specimen with their chemical nature. The multi-quantum well system investigated exhibits a V-groove grating profile along the a-axis accompanied by the formation of Zn- and Mg-enriched regions corresponding to the edges pointing towards the substrate and towards the upper surface, respectively. The optical signature of these heterostructures has been investigated by performing micro-photoluminescence on atom probe tip specimens. Effective mass calculations based on the 3D microscopy data indicate that the quantum well geometry and barrier composition yield a localization of hole states at the bottom of the V-groove.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.