Abstract

We investigate the critical behavior of three-dimensional antiferromagnetic CP(N-1) (ACP(N-1)) models in cubic lattices, which are characterized by a global U(N) symmetry and a local U(1) gauge symmetry. Assuming that critical fluctuations are associated with a staggered gauge-invariant (Hermitian traceless matrix) order parameter, we determine the corresponding Landau-Ginzburg-Wilson (LGW) model. For N=3 this mapping allows us to conclude that the three-component ACP(2) model undergoes a continuous transition that belongs to the O(8) vector universality class, with an effective enlargement of the symmetry at the critical point. This prediction is confirmed by numerical analyses of the finite-size scaling behaviors of the ACP(2) and the O(8) vector models, which show the same universal features at their transitions. We also present a renormalization-group (RG) analysis of the LGW theories for N≥4. We compute perturbative series in two different renormalization schemes and analyze the corresponding RG flow. We do not find stable fixed points that can be associated with continuous transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.