Abstract

SUMMARY To simulate seismic wave propagation in the spherical Earth, the Earth’s curvature has to be taken into account. This can be done by solving the seismic wave equation in spherical coordinates by numerical methods. In this paper, we use an optimized, collocated-grid finite-difference scheme to solve the anisotropic velocity–stress equation in spherical coordinates. To increase the efficiency of the finite-difference algorithm, we use a non-uniform grid to discretize the computational domain. The grid varies continuously with smaller spacing in low velocity layers and thin layer regions and with larger spacing otherwise. We use stress-image setting to implement the free surface boundary condition on the stress components. To implement the free surface boundary condition on the velocity components, we use a compact scheme near the surface. If strong velocity gradient exists near the surface, a lower-order scheme is used to calculate velocity difference to stabilize the calculation. The computational domain is surrounded by complex-frequency shifted perfectly matched layers implemented through auxiliary differential equations (ADE CFS-PML) in a local Cartesian coordinate. We compare the simulation results with the results from the normal mode method in the isotropic and anisotropic models and verify the accuracy of the finite-difference method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.