Abstract
Abstract The frequency (or phase velocity) of axially symmetric free vibrations in an elastic, isotropic, circular cylinder of medium thickness is studied on the basis of the three-dimensional linear theory of elasticity and several different shell theories. To be in good agreement with the solution of the three-dimensional equations for short wave lengths, an approximate theory has to include the influence of rotatory inertia and transverse shear deformation, for example, in a manner similar to Mindlin’s plate theory. A shell theory of this (Timoshenko) type is deduced from the three-dimensional elasticity theory. From a comparison of phase velocities it appears that, to a good approximation, membrane and curvature effects on one hand, and on the other hand, flexural, rotatory-inertia, and shear-deformation effects are mutually exclusive in two ranges of wave lengths, separated by a “transition” wave length. Thus, in the full range of wave lengths, the associated lowest phase velocities may be determined on the basis of the membrane shell theory (for wave lengths larger than the transition wave length) and on the basis of Mindlin’s plate theory (for wave lengths smaller than the transition wave length).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.