Abstract

Notwithstanding the importance of materials, microstructure also plays a significant role in performances of solid oxide cells. X-ray nanotomography with a voxel size of 25nm was used to image the microstructure of CGO-LSCF composite oxygen electrode obtained by electrostatic spray deposition (ESD). The stack of data was used to create a 3D model. Two volumes were selected from the 3D model and microstructural parameters like porosity, surface area, percolation path and tortuosity factor were computed to quantify the microstructure. The influence of the applied threshold values on the parameters was investigated. Comparison of these parameters with previously reported data has shown significant differences. The porosity of CGO-LSCF oxygen electrode varied from 67 to 87vol.%. Such a high porosity level makes this ESD microstructure unique. The microstructural parameters were used to determine the electrode polarization by Adler-Lane-Steele model. Modeled polarization resistance was in an agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.