Abstract

This paper investigates guidance scheme for missile with actuator failure and dynamics of autopilot. Firstly, considering first-order dynamics of autopilot, the guidance model with actuator failure is established. Secondly, an adaptive sliding mode fault-tolerant guidance law is designed on the basis of passive fault-tolerant technique and a novel nonsingular fast terminal sliding mode (NFTSM) manifold. Then, the adaptive algorithm with the feature of low-pass filter is proposed to ensure that adaptive parameters are bounded when the sliding mode is non-ideal. Finally, Lyapunov stability theory is adopted to prove that the states of closed-loop system are practical finite-time stability. Simulation results demonstrate the effectiveness and robustness of the proposed guidance strategy under the certain actuator failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.