Abstract

Laser-induced desorption of NO molecules from a NiO(1 0 0) surface is studied on an ab initio level. Based on ab initio NiO-cluster calculations a three-dimensional potential energy surface was constructed for the electronic ground and a representative excited state. Quantum wave packet calculations on these surfaces allow the simulation of experimental velocity distributions of the desorbed NO molecules. Analysis of the wave packet dynamics demonstrates that the experimentally observed bimodality of the velocity distributions is caused by a bifurcation of the wave packet on the excited state potential, where the molecular motion parallel to the surface plays a decisive role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.