Abstract
In recent years, research on three-dimensional (3D) reconstruction under low illumination environment has been reported. Photon-counting integral imaging is one of the techniques for visualizing 3D images under low light conditions. However, conventional photon-counting integral imaging has the problem that results are random because Poisson random numbers are temporally and spatially independent. Therefore, in this paper, we apply a technique called Kalman filter to photon-counting integral imaging, which corrects data groups with errors, to improve the visual quality of results. The purpose of this paper is to reduce randomness and improve the accuracy of visualization for results by incorporating the Kalman filter into 3D reconstruction images under extremely low light conditions. Since the proposed method has better structure similarity (SSIM), peak signal-to-noise ratio (PSNR) and cross-correlation values than the conventional method, it can be said that the visualization of low illuminated images can be accurate. In addition, the proposed method is expected to accelerate the development of autonomous driving technology and security camera technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.