Abstract

Aiming at numerous defects at SnO2/perovskite interface and lattice mismatch in perovskite solar cells (PSCs), we design a kind of three-dimensional (3D) molecular glue (KBF4-TFMSA), which is derived from strong intramolecular hydrogen bonding interaction between potassium tetrafluoroborate (KBF4) and trifluoromethanesulfonamide (TFMSA). A remarkable efficiency of 25.8% with negligible hysteresis and a stabilized power output of 25.0% have been achieved, in addition, 24.57% certified efficiency of 1 cm2 device is also obtained. Further investigation reveals that this KBF4-TFMSA can interact with oxygen vacancies and under-coordinated Sn(IV) from the SnO2, in the meantime, FA+ (NH2-C=NH) and K+ cations can be well fixed by hydrogen bonding interaction between FA+ and BF4-, and electrostatic attraction between sulfonyl oxygen and K+ ions, respectively. Thereby, FAPbI3 crystal grain sizes are increased, interfacial defects are significantly reduced and carrier extraction/transport is facilitated, leading to better cell performance and excellent stabilities. Non-encapsulated devices can maintain 91% of their initial efficiency under maximum-power-point (MPP) tracking while continuous illumination (~100 mW cm-2) for 1000 h, and retain 91% of the initial efficiency after 1000 h "double 60" damp-heat stability testing (60°C and 60%RH (RH, relatively humidity)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.