Abstract
In this paper, we consider a three-dimensional parameter space, which is the time-frequency-chirprate (TFCR), to characterize the time-varying features of multi-component non-stationary signals. A highly concentrated TFCR representation, named as the three-dimension extracting transform (TET), is proposed based on instantaneous frequency (IF) and chirprate (CR) equations. The CRs and IFs can be jointly estimated via the TET, and the spectral clustering algorithm is applied for component separation. To avoid the influence of the CR parameter on the IF identification, a nonlinear exponential transform of the IF and CR equations is introduced. We further give a TET reconstruction with the theoretical analysis. By employing the TET, the signals crossing in the time-frequency domain can be well separated and robust IF estimation can be obtained. Numerical experiments on simulated signals demonstrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.