Abstract

Rhodococcus globerulus P6 (previously designated Acinetobacter sp. strain P6, Arthrobacter sp. strain M5, and Corynebacterium sp. strain MB1) is able to degrade a wide range of polychlorinated biphenyl (PCB) congeners. The genetic and biochemical analyses of the PCB catabolic pathway reported here have revealed the existence of a PCB gene cluster--bphBC1D--and two further bphC genes--bphC2 and bphC3--that encode three narrow-substrate-specificity enzymes (2,3-dihydroxybiphenyl dioxygenases) that meta cleave the first aromatic ring. None of the bphC genes show by hybridization homology to each other or to bphC genes in other bacteria, and the three bphC gene products have different kinetic parameters and sensitivities to inactivation by 3-chlorocatechol. This suggests that there exists a wide diversity in PCB meta cleavage enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.