Abstract
Magnetic actuation has been well exploited for untethered manipulation and locomotion of small-scale robots in complex environments such as intracorporeal lumens. Most existing magnetic actuation systems employ a permanent magnet onboard the robot. However, only 2-DoF orientation of the permanent-magnet robot can be controlled since no torque can be generated about its axis of magnetic moment, which limits the dexterity of manipulation. Here, we propose a new magnetic actuation method using a single soft magnet with an anisotropic geometry (e.g., triaxial ellipsoids) for full 3-DoF orientation manipulation. The fundamental actuation principle of anisotropic magnetization and 3-DoF torque generation are analytically modeled and experimentally validated. The hierarchical orientation stability about three principal axes is investigated, based on which we propose and validate a multi-step open-loop control strategy to alternatingly manipulate the direction of the longest axis of the soft magnet and the rotation about it for dexterous 3-DoF orientation manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.