Abstract

Copper(II) alkynyl species are proposed as key intermediates in numerous Cu-catalyzed C-C coupling reactions. Supported by a β-diketiminate ligand, the three-coordinate copper(II) alkynyl [CuII]-C≡CAr (Ar = 2,6-Cl2C6H3) forms upon reaction of the alkyne H-C≡CAr with the copper(II) tert-butoxide complex [CuII]-OtBu. In solution, this [CuII]-C≡CAr species cleanly transforms to the Glaser coupling product ArC≡C-C≡CAr and [CuI](solvent). Addition of nucleophiles R'C≡C-Li (R' = aryl, silyl) and Ph-Li to [CuII]-C≡CAr affords the corresponding Csp-Csp and Csp-Csp2 coupled products RC≡C-C≡CAr and Ph-C≡CAr with concomitant generation of [CuI](solvent) and {[CuI]-C≡CAr}-, respectively. Supported by density functional theory (DFT) calculations, redox disproportionation forms [CuIII](C≡CAr)(R) species that reductively eliminate R-C≡CAr products. [CuII]-C≡CAr also captures the trityl radical Ph3C· to give Ph3C-C≡CAr. Radical capture represents the key Csp-Csp3 bond-forming step in the copper-catalyzed C-H functionalization of benzylic substrates R-H with alkynes H-C≡CR' (R' = (hetero)aryl, silyl) that provide Csp-Csp3 coupled products R-C≡CR via radical relay with tBuOOtBu as oxidant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.