Abstract

The showerhead region of a film-cooled turbine vane in a gas turbine engine involves a complex interaction between mainstream flow and coolant jets. This flow field was studied using three component laser Doppler velocimeter measurements in a simulated turbine vane test facility. Measurements were focused around the stagnation row of holes. Low and high mainstream turbulence conditions were used. The spanwise orientation of the coolant jets, typical for showerhead coolant holes, had a dominating effect. Very high levels of turbulence were generated by the mainstream interaction with the coolant jets. Furthermore, this turbulence was highly anisotropic, with the spanwise component of the turbulent fluctuations being twice as large as the other components. Finally, there was an interaction of the high mainstream turbulence with the coolant injection resulting in increased turbulence levels for the spanwise velocity component, but had little effect on the other velocity components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.