Abstract

A nanocomposite made of nickel oxide and iron oxide (NiO/Fe3O4) and its hybrid with reduced graphene oxide (rGO) as a conductive substrate with a highly functional surface (NiO/Fe3O4/rGO) was synthesized using a simple hydrothermal approach. This study addresses the challenge of developing efficient materials for energy storage and alcohol fuel cells. After confirming the synthesis through structural analysis, the potential of these nanocomposites as supercapacitor electrodes and catalysts for methanol and ethanol oxidation in alcohol fuel cells were evaluated. The synergy of combining the two metal oxides and adding rGO to the composite structure led to excellent electrocatalytic activity in alcohol oxidation. For the modified NiO/Fe3O4/rGO electrode in the methanol oxidation reaction (MOR), a current density of 450 mA/cm2 at 0.67 V and excellent catalyst stability of 98.7% over 20 hours in chronoamperometric analysis were observed. In the ethanol oxidation reaction (EOR), an oxidative current of 235 mA/cm2 at a peak potential of 0.76 V was seen, with catalyst stability of 96.4% after 20 hours. As a supercapacitor electrode, the NiO/Fe3O4 composite demonstrated a specific capacitance of 946 F/g, while NiO/Fe3O4/rGO showed 1155 F/g. The stability of these electrodes after 10000 GCD cycles was 83.6% and 90.6%, respectively. These findings suggest that the proposed structures are cost-effective and reliable alternatives for energy storage and production, suitable for alcohol fuel cells and supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.