Abstract

The advance of organic synthesis and the discovery of novel chemical transformations are often propelled by the rational programming of various bond-forming mechanisms and sequences that involve delicate reactive intermediates. In this study, we present an innovative Rh(ii)-catalyzed asymmetric three-component cascade reaction involving IIII/PV-hybrid ylides, aldehydes, and carboxylic acids for the synthesis of 1,3-dioxoles with moderate to good yields and high enantioselectivity. This method utilizes IIII/PV-hybrid ylides as carbene precursors to form α-PV-Rh-carbenes, which initiate the formation of carbonyl ylides, followed by stereoselective cyclization with carboxylate anions and an intramolecular Wittig olefination cascade, ultimately resulting in the modular assembly of chiral 1,3-dioxoles. By employing this strategy, we successfully coupled various aldehydes and carboxylic acids to give chiral non-benzofused 1,3-dioxole scaffolds, highlighting the potential for late-stage functionalization of biologically relevant molecules, versatile synthetic manipulation, and the production of poly-1,3-dioxole macromolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.