Abstract

The design of a three-channel solar radiometer used to determine total columnar atmospheric water-vapor amounts is presented. The main channel is located in the 0.94-µm water-vapor band, and two other channels are located in adjacent nonabsorption regions of the solar spectrum and are used to remove scattering effects from the main channel. Water-vapor transmittance is determined by means of a modified Langley approach, and these transmittances are converted to columnar water vapor by means of a band model developed at the University of Arizona. Several cases are presented in which columnar water-vapor amounts are determined through the use of the instrument and method described here. These results are compared with sounding-balloon results. Tests of the method indicate that columnar water vapor may be retrieved with an uncertainty of less than 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.