Abstract

Multichannel metasurfaces are becoming a significant trend in the field of optical encryption due to their excellent manipulation of optical wavefronts. However, existent multichannel metasurfaces for optical encryption mostly implement only two channels in the near-field, or three channels by combining the near- and far-field. In this paper, we propose and simulate a three-channel metasurface that works entirely in the near-field and uses the polarization state of the incident light, left circularly polarized (LCP) light, right circularly polarized (RCP) light, and linearly polarized (LP) light as the security key. The metasurface consists of two types of nanostructures that work as a polarizer and a quarter-wave plate, providing an additional degree of freedom for encoding that enables independent near-field display at 633 nm wavelength incident light. The proposed three-channel metasurface has the advantages of high information density and high security, which will pave the way for multi-channel applications such as ultracompact displays, optical encryption, and information storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.