Abstract

We present an ab initio tight-binding method that allows to improve on the effective potential and minimal basis approximations employed in semiempirical calculations. Three-center expansions are used to evaluate the zeroth-order Hamiltonian matrix elements and repulsive energy terms in the spirit of the Horsfield method. Self-consistency is handled by expanding atomic orbital products in an auxiliary basis following the work of Giese and York, combined with a two-center expansion of the exchange-correlation kernels. Together with nonminimal main basis sets (double-ζ plus polarization), we show that the resulting method trades a modest amount of accuracy for a significant gain in speed, compared to that of numerical atomic orbital density functional theory, in calculations on small molecules, bulk compounds, and metal nanoclusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call