Abstract
The angular part of the Faddeev equations is solved analytically for s-states for two-body square-well potentials. The results are, still analytically, generalized to arbitrary short-range potentials for both small and large distances. We consider systems with three identical bosons, three non-identical particles and two identical spin-1/2 fermions plus a third particle with arbitrary spin. The angular wave functions are in general linear combinations of trigonometric and exponential functions. The Efimov conditions are obtained at large distances. General properties and applications to arbitrary potentials are discussed. Gaussian potentials are used for illustrations. The results are useful for numerical calculations, where for example large distances can be treated analytically and matched to the numerical solutions at smaller distances. The saving is substantial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.