Abstract

The recombination of gaseous ions in the presence of third bodies is assumed to follow a sequence of two bimolecular steps: M + X+ [Formula: see text] MX+ and MX+ + Y− [Formula: see text] XY + M. The termolecular rate constants of the over-all processes are calculated for several ionized gases at various temperatures. For the calculation, the equilibrium internuclear separation and the corresponding binding energy of a complex ion, MX+, are obtained by minimizing the interaction energy between M and X+, which is approximated to the sum of the Lennard-Jones potential for the M–X interaction and the polarization energy between M and X+. The recombination coefficients of some ionized gases at 288 °K and various pressures are calculated and compared with the observed data. The agreement is found to be satisfactory. The limitations of this theoretical approach are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call