Abstract

The reaction of heterolytic dihydrogen splitting by frustrated Lewis pairs P(R)3 and B(C6F5)3 (where R = t-butyl and 1-adamantene) is driven by strong three-body contributions which originate from the induction and charge transfer effects. The three-body effect increases dramatically as a function of inter-hydrogen distance. As predicted by the symmetry adapted perturbation theory, the "frustration" of Lewis pairs originates from the dual role of the exchange effects. First, the exchange manifests itself in the first-order Pauli repulsion by keeping the pairs away. Second, and equally important, the second-order exchange-induction almost completely cancels the effects of the second-order induction. This suppression of induction effects eases up upon the interaction of the frustrated pairs with H2. The activation of induction in this instance constitutes the three-body effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.