Abstract
We theoretically investigate ground-state properties of a three-component Fermi gas with pairwise contact interactions between different components near a triatomic resonance where bound trimers are about to appear. Using variational equations for in-medium two- and three-body cluster states in three dimensions, we elucidate the competition of pair and triple formations due to the Fermi surface effects. We present the ground-state phase diagram that exhibits transition from a Cooper pair to Cooper triple state and crossover from a Cooper triple to tightly bound trimer state at negative scattering lengths. This three-body crossover is analogous to the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover observed in a two-component Fermi gas. We predict that the threshold scattering length $a_{-}$ for three-body states can be shifted towards the weak-coupling side due to the emergence of Cooper triples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.