Abstract

AbstractNarrow‐band red‐emitting fluoride phosphors play a crucial role in lighting and backlight displays, whereas the stability issue is a major challenge. Here, highly stable K2SiF6:Mn4+ (KSFM) single crystal phosphors with tunable sizes (20–1000 µm) are grown by a facile saturated crystallization method. The small specific surface area together with the unique Mn4+‐rare interface layer in KSFM single crystals enables the simultaneous fulfillment of high external quantum efficiency, excellent moisture, improved thermal quenching, and dissipation for high‐power and laser‐driven lighting applications. As a prototype, a warm white laser diode device with a high luminous flux of 202.7 lm and correlated color temperature of 3277 K, as well as a color rendering index of 87.9 is presented. This work provides new insights into the development of highly efficient and stable materials for advanced lighting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.