Abstract

Biothiols are widely involved in various important physiological activities and play a significant role in maintaining redox homeostasis in living organisms. Herein, we designed and synthesized three new asymmetric fluorescent probes (BDP-S-Ph, BDP-S-ENE and BDP-S-R) to discriminate Cys from Hcy/GSH. These probes reacted with Cys to form meso-amino-BODIPYs via SNAr substitution-rearrangement, thereby inducing a fluorescence turn-on effect. Moreover, they could selectively and sensitively detect Cys in solution with low detection limits (50 nM, 28 nM and 87 nM, respectively). Through comparing the response rates of the three probes to Cys, we concluded that the increase of conformational restrictions led to a decrease in probe reactivity. Besides, the sensing mechanism was demonstrated by mass spectrometry. Furthermore, cell experiments indicated that the probes were able to image exogenous and endogenous Cys through green or red channels in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.