Abstract

Multiprotein bridging factor 1 (MBF1) is known to be a transcriptional co-activator that mediates transcriptional activation by bridging between an activator and a TATA-box binding protein (TBP). We demonstrated that expression of every three MBF1 from Arabidopsis partially rescues the yeast mbf1 mutant phenotype, indicating that all of them function as co-activators for GCN4-dependent transcriptional activation. We also report that each of their subtypes shows distinct tissue-specific expression patterns and responses to phytohormones. These observations suggest that even though they share a similar biochemical function, each MBF1 has distinct roles in various tissues and conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call