Abstract

The trimetallic phosphopolyoxotungstate anions [Ni3(OH2)3(B-PW9O34){WO5(H2O)}]7− and [Co3(OH2)6(A-PW9O34)2]12− have been studied as epoxidation catalysts for oxygen transfer from 30% H2O2 to a range of allylic alcohols under biphasic conditions (1,2-dichloroethane/H2O) at 15 °C. The reaction mechanism involves coordination of an allylic alcohol at an M(II) site in each case, prior to transfer of a peroxy oxygen from an adjacent W(O2) site. The latter is formed from a terminal W = O unit by reaction with H2O2. Evidence of W(O2) formation was obtained through IR studies. The W(O2) group forms the epoxide by transfer of an oxygen atom to the CC bond of the coordinated allylic alcohol. Kinetic studies using 3-methyl-2-buten-1-ol as the allylic alcohol substrate have been modelled with all three metal sites catalytically active. The reaction involves an autocatalysis mechanism involving an induction period, which can be rationalised by proposing not only coordination of the allylic alcohol to M(II), but also the product hydroxy epoxide, both through their –OH groups. The autocatalysis is generated by formation of the W(O2) group adjacent to a coordinated hydroxy epoxide, which competes with coordination of allylic alcohol. The mechanism requires some twenty-one steps involving just the generic steps listed above, with all three metal sites catalytically active. Temperature-dependent kinetic studies and subsequent Eyring analyses have shown that the Co(II)-containing catalyst is the most active of the two. Analogous studies of the epoxidation of 3-methyl-2-buten-1-ol by the two-site [M4(OH2)2(B-PW9O34)2]10− ions as catalysts, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II), at 15 °C gave an order of reactivity of Cu(II) > Ni(II) > Zn(II), Co(II), Mn(II), which mostly mimics the natural order of stability constants (the Irving-Williams series), suggesting that the formation of the allylic alcohol complexes play a dominant role in this series of related complex anions, with greater replacement of water by allylic alcohol leading to greater reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.