Abstract

A systematic numerical study of non-pairwise vortex interaction forces in the Ginzburg–Landau model for single-and multicomponent superconductivity is presented. The interactions are obtained by highly accurate numerical free energy minimization. In particular a three-body interaction is defined as the difference between the total interaction and sum of pairwise interactions in a system of three vortices and such interactions are studied for single and two-component type-1, type-2, and type-1.5 superconductors. In the investigated regimes, the three-body interaction is found to be short-range repulsive but long-range attractive in the type-1 case, zero in the critical κ (Bogomoln’y) case, attractive in the type-2 case and repulsive in the type-1.5 case. Some systems of four vortices are also studied and results indicate that four-body forces are of substantially less significance than the three-body interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.