Abstract

Three new acylated anthocyanidin 3-rutinoside-5-glucosides were isolated from the violet-blue flowers of Saintpaulia ‘Thamires’ (Saintpaulia sp.) along with a known flavone glycoside. Three new acetylated anthocyanins were determined to be 3-O-[6-O-(4-O-(acetyl)-α-rhamnopyranosyl)-β-glucopyranoside]-5-O-(β-glucopyranoside)s of malvidin (pigment 1), peonidin (pigment 2), and pelargonidin (pigment 3) by chemical and spectroscopic methods. HPLC analysis revealed that malvidin 3-O-acetylrutinoside-5-O-glucoside existed as a dominant pigment in the violet-blue flowers. Moreover, the isolated flavone was identified to be apigenin 4′-O-β-glucuronopyranoside (pigment 4).On the visible absorption spectral curves of fresh violet-blue petals and in their crude extracts in pH 5.0 buffer solution, two characteristic absorption maxima at 547 and 577nm, with a shoulder near 620nm, were observed. In contrast, the absorption curves of malvidin 3-O-acetylrutinoside-5-O-glucoside and its deacyl anthocyanin exhibited only one maximum at 535nm in pH 5.0 buffer solution, and its color was violet and soon fell into decay.However, by addition of apigenin 4′-O-glucuronide, the color of malvidin 3-O-acetylrutinoside-5-O-glucoside changed from violet to violet-blue, similar to that of the fresh flower in pH 5.0 buffer solution. The absorption curve of its violet-blue solution exhibited two similar absorption maxima at 547 and 577nm, with a shoulder near 620nm. These results suggest that intermolecular copigmentation between malvidin 3-O-acetylrutinoside-5-O-glucoside and apigenin 4′-O-glucuronide may be responsible for the violet-blue flower color of S. ‘Thamires’.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call