Abstract

The discovery of antiviral approaches to prevent or cure respiratory syncytial virus (RSV) infections is critical, particularly because RSV is one of the most common causes of infant respiratory problems. There is currently no approved vaccination available to treat RSV infections. FDA has approved the drug ribavirin, but it is not sufficient to treat RSV. This work aimed to find and study in silico anti-RSV drugs that target matrix protein and nucleoprotein. In this study, we have identified five drug candidates that had better binding energies than ribavirin. Garenoxacin appeared as top lead compounds between them. AutoDock Vina was used to execute molecular docking of a library of chosen chemicals. The high-score compound was then confirmed using the Maestro 12.3 module's molecular dynamics simulation and the binding energies derived using Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA). Comparative molecular dynamics simulations revealed that garenoxacin has better stability and high residue contacts with high binding affinity than ribavirin. This study showed garenoxacin could prevent RSV infection better than ribavirin. In pursuing a more effective RSV control drug, additional research into these chemicals in vitro and in vivo is essential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call