Abstract

This paper presents a proof technique for proving refinements for general state-based models of concurrent systems that reduces proving forward simulations to thread-local, step-local proof obligations. Instances of this proof technique should be applicable to systems specified with ASM rules, B events, or Z operations. To exemplify the proof technique, we demonstrate it with a simple case study that verifies linearizability of a lock-free implementation of concurrent hash sets by showing that it refines an abstract concurrent system with atomic operations. Our theorem prover KIV translates programs to a set of transition rules and generates proof obligations according to the technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.