Abstract
Given a polygonal channel between obstacles in the plane or in space, we present an algorithm for generating a parametric spline curve with few pieces that traverses the channel and stays inside. While the problem without emphasis on few pieces has trivial solutions, the problem for a limited budget of pieces represents a nonlinear and continuous (‘infinite’) feasibility problem. Using tight, two-sided, piecewise linear bounds on the potential solution curves, we reformulate the problem as a finite, linear feasibility problem whose solution, by standard linear programming techniques, is a solution of the channel-fitting problem. The algorithm allows the user to specify the degree and smoothness of the solution curve and to minimize an objective function, for example, to approximately minimize the curvature of the spline. We describe in detail how to formulate and solve the problem, as well as the problem of fitting parallel curves, for a spline in Bernstein-Bézier form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.