Abstract
In view of the external thread fracture during casing running in a well in Xinjiang Oilfield, the failure reasons of thread fracture were analyzed by combining the theory with experiment, and the casing safe service window with harsh working conditions was given. The operation of the failed casing and determined the actual working conditions of the casing threaded joints during the running process were investigated in this paper. According to the theoretical method, the boundary conditions and load conditions of the fracture casing joint in service were determined. With the aid of full-scale physical simulation test device, as well as the above boundary conditions and load conditions, the same batch casing tensile bearing characteristics were determined. Through nondestructive testing, the metallographic observation, scanning electron microscopy, spectral analysis and up-and-down test, the main controlling factors of casing thread fracture were determined. By the finite element analysis, the casing threads service state under axial tension and bending loads was established, the safety performance of threads under ideal working conditions was studied, and the fatigue mechanism of threads was revealed. Combined with the analysis results, the corresponding relationship between the casing tensile bearing characteristics and safety factor was given, which provides technical support for the safe service selection of casing body and thread under harsh conditions, saving cost and shortening the well construction period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.