Abstract

We study the effects of additive Gaussian noise on the behaviour of a simple spatially extended system, which is locally modelled by a nonlinear two-dimensional iterated map describing neuronal dynamics. In particular, we focus on the ability of noise to induce spatially ordered patterns, i.e. the so-called noise-induced pattern formation. For intermediate noise intensities, the spatially extended system exhibits ordered circular waves, thereby clearly manifesting the constructive role of random perturbations. The emergence of observed noise-induced patterns is explained with simple arguments that are obtained by analysing the typical spatial scale of patterns evoked by various diffusion coefficients. Since discrete-time systems are straightforward to implement and require modest computational capabilities, the present study describes one of the most fascinating and visually compelling examples of noise-induced self-organization in nonlinear systems in an accessible way for graduate or even advanced undergraduate students attending a nonlinear dynamics course.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.