Abstract
Companies have an advantage over the competitors if they can present customized offers to customers. Demographic information of customers is critical for the companies to develop individualized systems. While current technologies make it easy to collect customer data, the main problem is that demographic data are usually incomplete. Hence, several methods are developed to predict unknown genders of customers. In this study, customer genders are predicted from their paths in a shopping mall using fuzzy sets. A fuzzy classification method based on Levenshtein distance is developed for string data that refer to the indoor customer paths. Although there are several ways to predict the gender, no study has focused on path-based gender classification. The originality of the research is to classify customer data into the gender classes using indoor paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.