Abstract

Background: Naturally occurring chalcones afford diverse pharmacological activities such as anticancer, anti-malarial, anti-inflammatory, anti-tubercular, anti-hypertensive, anti-arrhythmic, antidiabetic, anti-angiogenic, anti-obesity, antiplatelet, anti-oxidant, hypolipidemic and anti-gout. They are frequently being used by the various researchers to design and develop new synthetic chalcones and many novel hybrid analogs as bioactive drugs. Many of these drugs are hybrid molecules, which are designed through molecular hybridization theory, and have displayed multiple pharmacological and medicinal aspects. This multi-effective feature of these hybrid derivatives makes them efficient and ideal drug entities for the treatment of various dreadful diseases. Methods: A structured search of published research literature from recognized standard medical databases such as PubMed, Google Scholar, Google Patents, Scopus, etc., over the defined period of 10 years (January 2009 to December 2018) have been performed. Various reported heterocyclic chalcone hybrids, their synthesis methods, plausible mechanism(s) of action(s), and probable structure-activity relationships for the therapeutic applications in cancer, malaria, tuberculosis, leishmaniasis, inflammation, diabetes, microbial infection, and cardiovascular diseases remained the centre for attraction of this article. Results: The present review article focuses on chalcone hybrids with different heterocyclic moieties and categorizing them on the basis of their pharmacology and therapeutic significance in the last ten years and has proposed their structure-activity relationships. Conclusion: Chalcone and their hybrids have largely been targeted for their anticancer, anti-malarial, anti-inflammatory, anti-tubercular, antileishmaniasis, and anti-microbial activity. This comprehensive study may assist the medicinal chemist to design and develop innovative chalcone hybrids with significant therapeutic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.