Abstract

We prove an Ω(n2) lower bound on the query complexity of local proportionality in the Robertson-Webb cake-cutting model. Local proportionality requires that each agent prefer their allocation to the average of their neighbors' allocations in some undirected social network. It is a weaker fairness notion than envy-freeness, which also has query complexity Ω(n2), and generally incomparable to proportionality, which has query complexity Θ(nlog⁡n). This result separates the complexity of local proportionality from that of ordinary proportionality, confirming the intuition that finding a locally proportional allocation is a more difficult computational problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.