Abstract
Thanks to a simultaneous acquisition at high and low kilovoltage, dual energy computed tomography (DECT) can achieve material-based decomposition (iodine, water, calcium, etc.) and reconstruct images at different energy levels (40 to 140keV). Post-processing uses this potential to maximise iodine detection, which elicits demonstrated added value for chest imaging in acute and chronic embolic diseases (increases the quality of the examination and identifies perfusion defects), follow-up of aortic endografts and detection of contrast uptake in oncology. In CT angiography, these unique features are taken advantage of to reduce the iodine load by more than half. This review article aims to set out the physical basis for the technology, the acquisition and post-processing protocols used, its proven advantages in chest pathologies, and to present future developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.