Abstract

It is very difficult to study the independent contributions of the afferent and efferent pathways of the subdiaphragmatic vagus to physiology and behavior. Total subdiaphragmatic vagotomy can confound the interpretation of experimental results because it destroys both afferent and efferent vagal fibers. One approach to address this problem involves producing a total ablation of afferent (or efferent) vagal fibers while retaining half of the efferent (or afferent) vagal fibers by making a unilateral rhizotomy plus contralateral subdiaphragmatic vagotomy. However, the completeness of this afferent (or efferent) lesion is based on the assumption that there are no cross-over pathways within the thoracic cavity between the vagal trunks of the rat. To directly test for the presence of vagal cross-over pathways in the rat, we recorded the compound action potentials from the ventral and dorsal trunks of the subdiaphragmatic vagus following electrical stimulation of the left or right cervical vagi. C-fiber cross-over pathways comprised an average of 9% of the total nerve responses (range was 0 to 29%, n = 20). Direct application of the anesthetic bupivacaine to the vagus completely blocked the recorded signals. The vagal cross-over pathways were also demonstrated using capsaicin as a stimulus. These results indicate the presence of thoracic cross-over pathways between vagal trunks in the rat and demonstrate that for most animals it is not possible to produce a “complete” ablation of afferent (or efferent) components of the subdiaphragmatic vagus using unilateral rhizotomy combined with contralateral subdiaphragmatic vagotomy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call