Abstract

The laser induced plasma in air produced by 6 ns, 532 nm Nd:YAG pulses with 25 mJ energy was studied using the Thomson scattering method and plasma imaging techniques. Plasma images and Thomson scattered spectra were registered at delay times ranging from 150 ns to 1 μs after the breakdown pulses. The electron density and temperature, as determined in the core of the plasma plume, were found to decrease from 7.4 × 1017 cm−3 to about 1.03 × 1017 cm−3 and from 100 900 K to 22 700 K. The highly elevated electron temperatures are the result of plasma heating by the second, probe pulse in the Thomson scattering experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.