Abstract
In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson’s multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased.To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson’s multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches.Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson’s tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson’s multitaper approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.