Abstract

Two-dimensional (2D) materials and their heterostructures have been widely explored for high-performance energy conversion applications. The Thomson effect—a higher order transport process—plays an important role in thermoelectric devices, yet its effect on the performance of thermionic devices remains unknown thus far. Here, we investigate the performance of thermionic refrigeration in vertically stacked heterostructure (VHS) and laterally stitched heterointerface (LHS) composed of a graphene and a 2D semiconductor (i.e., MoS2 and WSe2) in the presence of the Thomson effect. Using a temperature-dependent Seebeck coefficient, we derived the analytical expressions of the cooling efficiency and the effective ZT. We shall show that the Thomson effect improves the coefficient of performance (COP) by up to 20%, particularly, in the case where the temperature difference between the cold and the hot electrodes is large. However, the Carnot efficiency decreases with the temperature difference. The overall COP is reduced by the Thomson effect. We calculate the COP in graphene/MoS2/graphene and graphene/WSe2/graphene VHS and LHS devices. We show that the LHS composed of WSe2 significantly outperforms the VHS and MoS2 counterpart. These findings provide an understanding of thermionic processes in the higher-order transport regime and shall offer insights into the design of novel 2D material heterostructure thermionic energy converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.