Abstract
The equation of state (EOS) of nuclear matter is investigated in a semi-classical mean-field (MF) approach. Starting from the phase-space NN-interaction of Myers and Swiatecki [Nucl. Phys. A 601 (1996) 141], the EOS of nuclear matter by the Thomas–Fermi approximation is derived. A self-consistent semi-classical approach is presented by employing the Landau Fermi-Liquid theory (LFT). In our statistical approach, the phase-space occupation number can be expressed in terms of an extended effective mass which is affected by both temperature and nucleonic density. Accordingly, an explicit expression of the nucleonic chemical potential inside the nucleonic occupation number can be obtained. Special attention is also devoted to the density dependence of the nuclear symmetry free energy at different temperatures. The results of this model are compared with other theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.