Abstract

Arterial tissue microstructure and its mechanical properties directly correlate with cardiovascular diseases such as atherosclerosis and aneurysm. Experienced hemodynamic loads are the primary factor of arterial tissue remodeling. By virtue of altering hemodynamic loads along the arterial tree, respective structure-function relations will be region-dependent. Since, there is limited experimental evidence on these structure-function homeostases, the current study, aims to report microstructural and mechanical alterations along the aorta from the aortic root up to the diaphragm, where intense hemodynamic alterations take place. The ascending, arch, and descending parts of the same cadaveric aortas were investigated by histomechanical examinations. Anatomical landmarks were labeled on the specimens, and then biaxial tensile tests were conducted on samples from each region. Furthermore, area fractions of elastin and collagen were measured on stained sections of the tissue. Also, a fragmentation index of elastin tissue is proposed for quantitative measurement of ECM integrity, which correlates with the nature of experienced hemodynamic loads.For the ascending aorta and the aortic arch, different values for mechanical properties and fragmentation index are observed even in a specific cross-section of the artery. It is primarily due to the complex loading regimes and curved geometry. Conversely, microstructural and mechanical features along the descending aorta exhibited minimal variations, and hence, smooth blood flow and pressure waves are expected in this region, which is well-documented in the literature.Both of the microstructural and mechanical features of the aorta vary along the arterial tree depending on the hemodynamic and geometric complexities they incur and may shed light on the initiation of cardiovascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.