Abstract
Belarusian Potash salt deposits are bedded under aquifers and unstable soil stratums. Therefore, to develop the deposits a vertical mine shaft sinking is performed using the artificial ground freezing technology. Nowadays, real time observations of ground temperature and groundwater level is applied to control the ground freezing process. Numerical simulation can be used for a comprehensive analysis of measurements results. In this paper a thermo-hydro-mechanical model of freezing of water saturated soil is proposed. The governing equations of the model are based on balance laws for mass, energy and momentum for a fully saturated porous media. Clausius-Clayperon equation and poroelastic constitutive relations are adopted for description of a coupled change in water and ice pore pressure, porosity and a stress-strain state of freezing soil. The proposed model enables us to describe evolution of equivalent water content measured in Mizoguchi’s test and predict frost heave strain in one-sided freezing test. Numerical simulation of ground freezing in the Petrikov mining complex located in Belarus has shown that the model is able to describe field measurements of pore pressure inside a forming frozen wall. Furthermore, the mismatch between hydro- and thermo-monitoring data obtained during the artificial freezing is analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.