Abstract

This article considers the thixotropy of SCC mortars and the responsible mechanisms. The objective is a model describing the thixotropic structural build-up based on interparticle interactions and hydration kinetics of the fresh binder paste. In the experimental studies, the formation of thixotropic structure in SCC mortars was varied by changing the composition of the binder paste and quantified rheologically. At the same time, the surface coverage of particles by superplasticizer polymers and the particle packing in the suspension were determined to characterize interparticle interactions. Based on the results, a qualitative model as well as a calculation method were developed to describe the thixotropic behaviour. It is shown that the contribution of colloidal surface interactions and hydration reactions to thixotropy both increase with decreasing surface coverage and therefore decreasing particle separation. In addition, thixotropy increases with increasing contact interactions resulting from a higher solid volume fraction or a lower maximum packing density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.