Abstract

AbstractWe present a model for thixotropic gravity currents flowing down an inclined plane that combines lubrication theory for shallow flow with a rheological constitutive law describing the degree of microscopic structure. The model is solved numerically for a finite volume of fluid in both two and three dimensions. The results illustrate the importance of the degree of initial ageing and the spatio-temporal variations of the microstructure during flow. The fluid does not flow unless the plane is inclined beyond a critical angle that depends on the ageing time. Above that critical angle and for relatively long ageing times, the fluid dramatically avalanches downslope, with the current becoming characterized by a structured horseshoe-shaped remnant of fluid at the back and a raised nose at the advancing front. The flow is prone to a weak interfacial instability that occurs along the border between structured and de-structured fluid. Experiments with bentonite clay show broadly similar phenomenological behaviour to that predicted by the model. Differences between the experiments and the model are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.