Abstract

In this thesis, effects of clay addition, clay replacement, and cement type on thixotropic behavior of cement-based materials are investigated. Thixotropy is the property of certain fluid materials that are thick or viscous under normal conditions but flow or become less viscous over time when shaken, agitated, or otherwise stressed. Freshly-mixed cement pastes are thixotropic materials, which become fluid when agitated but restore its structural form at rest. This is because cement pastes experience microstructure change with time due to the particles flocculation and cement hydration. The thixotropic behavior of cement-based materials is important in the modern concrete construction. Shape stability of concrete mixtures is often required for shotcrete and slip form construction so that the concrete mixture can adhere to the substrates or hold the shape right after casting and without support from formwork. Quick structural restore, or high thixotropy, of concrete can reduce formwork pressure in construction. Clay additions or replacement for cement often enhance concrete thixotropy and increase concrete shape stability. In the present study, the typical hysteresis loop rheology test method is employed to evaluate thixotropy of various cement pastes. The pastes were made with different types of cement and with /without clay addition/replacement. The types of cement used are Ashgrove Type I, Lafarge Type I/II, Type IV, and High Alkali Type I cement. The clay

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.